Monatshefte für Chemie Chemical Monthly Printed in Austria

Synthesis of Pyrimidine Annelated Heterocycles [1]. Regioselective Heterocyclization of 6-Cyclopent-2-enyl-5-hydroxy-1,3-dimethylpyrimidine-2,4(*1H*,3*H*)-dione and 5-Cyclopent-2-enyl-6-hydroxy-1,3-dimethylpyrimidine-2,4(*1H*,3*H*)-dione

Krishna C. Majumdar^{*}, Uday K. Kundu, Swapan K. Samanta, and Nirmal K. Jana

Department of Chemistry, University of Kalyani, Kalyani-741 235, W.B, India

Received October 28, 2002; accepted October 30, 2002 Published online June 2, 2003 © Springer-Verlag 2003

Summary. Two hitherto unreported pyrimidine annelated heterocycles were synthesized from 6-cyclopent-2-enyl-5-hydroxy-1,3-dimethylpyrimidine-2,4(IH,3H)-dione and 5-cyclopent-2-enyl-6-hydroxy-1,3-dimethylpyrimidine-2,4(IH,3H)-dione by reaction with pyridine hydrotribromide or hexamethylenetetramine hydrotribromide. The first one was also obtained by reaction with concentrated sulfuric acid.

Keywords. Pyridine hydrotribromide; Heterocycles; Cyclization; Hexamethylenetetramine hydrotribromide; 6-*endo* Cyclization.

Introduction

Pyrimidine derivatives are important due to their proven biological activity and medicinal utility [2-9]. We have recently reported the synthesis of a number of pyrimidine annelated heterocycles [10-12]. Here we report a simple and regiose-lective synthesis of a number of hitherto unknown pyrimidine annelated heterocycles.

^{*} Corresponding author. E-mail: kcm@klyuniv.ernet.in

Results and Discussion

The starting materials 4 and 5 for this study were easily obtained from the reaction of 1,3-dimethyl-5-hydroxyuracil (1) and 1,3-dimethyl-6-hydroxyuracil (2) with 3-chloro-cyclopentene (3) in refluxing acetone in the presence of anhydrous potassium carbonate for 20 and 8 h (Scheme 1).

Recently, we have reported the use of pyridine hydrotribromide [13–19] and hexamethylenetetramine hydrotribromide [20] for this type of heterocyclization. Thus, **4** was treated with one equivalent of pyridine hydrotribromide or hexamethylenetetramine hydrotribromide in chloroform at 0–5°C for 30 min. to give the bridged tricyclic bromo compound **6** (80%). The product was characterized by its elemental analysis and spectral data. The IR spectrum of **6** showed $\bar{\nu}_{max} = 1700 \text{ cm}^{-1}$ due to a carbonyl group. Two structures, **6** and **7**, may be considered for the product. The ¹H NMR spectrum showed three nonequivalent protons, a one proton triplet at $\delta = 3.91 \text{ ppm}$ (J = 8 Hz) assignable to H_c, a one proton broad singlet at $\delta = 4.57 \text{ ppm}$ assignable to H_a, and a one proton doublet at $\delta = 5.37 \text{ ppm}$ (J = 8 Hz) assignable to H_b. From the splitting pattern and the coupling constant values it is clear that H_b and H_c are vicinal protons. This clearly shows that the product has the bridged tricyclic structure **6** instead of the linearly fused structure **7** where H_b and H_c are not at adjacent carbons.

Final confirmation for the structure of **6** came from its ¹³C NMR, DEPT, COSY, and HETCOR experiments. The COSY spectrum of compound **6** shows that proton H_a at $\delta = 4.57$ ppm correlates with protons H_f and H_g at $\delta = 2.91-2.24$ ppm, proton H_b at $\delta = 5.37$ ppm correlates with proton H_c at $\delta = 3.91$ ppm, and H_c correlates with a proton resonance at $\delta = 2.48-2.59$ ppm (H_d/H_e). H_d , H_e , H_f , and H_g are correlated with each other. The ¹³C chemical shifts of compound **6** were assigned by DEPT and HETCOR experiments. Multiplicity was established by DEPT experiment. DEPT showed seven protonated carbons, two $-CH_3$, three >CH-, and two $-CH_2$ -. Protonated carbon resonances were established by direct correlation with proton resonances by a HETCOR experiment (normal one bond C–H

1138

Scheme 1

Synthesis of Pyrimidine Annelated Heterocycles

coupling). Methyl protons (NMe) resonance at $\delta = 3.34$ ppm is related to a carbon resonance at $\delta = 28.68$ ppm and the other methyl protons signal at $\delta = 3.38$ ppm (NMe) is related to a carbon resonance at $\delta = 32.87$ ppm. Methine proton resonance at $\delta = 4.57$ ppm (H_a) is related to a carbon resonance at $\delta = 53.37$ ppm (C₈) and two methine protons resonances at $\delta = 5.37$ (H_b) and 3.91 ppm (H_c) are related to carbon resonances at $\delta = 93.51$ (C₁₂) and 45.63 ppm (C₁₁). Methylene protons resonance at $\delta = 2.48-2.59$ ppm (H_f, H_g) is related to the carbon resonance at $\delta = 33.47$ ppm (C₉), another two methylene protons resonance at $\delta = 2.19-2.24$ and 1.87–1.97 ppm (H_d, H_e) are related with a carbon resonance at $\delta = 29.51$ ppm (C₁₀).

The mass spectrum of **6** showed molecular ion peaks at m/z = 300, 302. Final confirmation for the structure **6** was gained from the observation that **6** remained unchanged upon treatment with alcoholic KOH at reflux for 2 h or on heating with palladised charcoal in diphenyl ether at 260°C for 2 h (Scheme 2). Therefore, the alternating structure **7** was ruled out on the basis of chemical and spectroscopic evidence.

Cold conc. H₂SO₄ has been widely used for the cyclization of *ortho*-allyl phenols [21–23] and other related substrates [24, 25]. Thus, **4** was treated with conc. H₂SO₄ at 0–5°C to give a white solid. This was characterized as the bridged tricyclic product **9** by its elemental analysis and spectral data. The IR spectrum of **9** showed $\bar{\nu}_{max} = 1700 \text{ cm}^{-1}$ due to the carbonyl group. The ¹H NMR spectrum of **9** revealed a one proton broad singlet at $\delta = 3.29$ ppm due to the proton H_c and a one proton broad singlet at $\delta = 4.91$ ppm due to the proton H_a. The mass spectrum of **9** showed a molecular ion peak at m/z = 222. ¹³C NMR showed eleven carbon atoms and DEPT experiment showed seven protonated carbon atoms, two –CH₃, three >CH₂, and two >CH–. Confirmation for structure **9** came from the observation that the product **9** remained unchanged when heated with palladised charcoal in diphenyl ether at 260°C for 2 h. (Scheme 2).

The substrate 5 was similarly treated with one equivalent of pyridine hydrotribromide or hexamethylenetetramine hydrotribromide to afford a gummy mass. This was characterized as the bridged tricyclic bromo compound 10 by its elemental analysis and spectral data. The IR spectrum of 10 showed $\bar{\nu}_{max} = 1690 \,\mathrm{cm}^{-1}$ due to a carbonyl group. Two structures 10 and 11 may be considered for the product. The ¹H NMR spectrum showed three lone protons, one a triplet at $\delta = 3.99 \text{ ppm}$ (J = 8 Hz) assignable to H_c, a broad singlet at $\delta = 4.47 \text{ ppm}$ assignable to H_a, and a doublet at $\delta = 5.49$ ppm (J = 8 Hz) assignable to H_b. ¹³C NMR showed eleven carbon atoms and DEPT experiment showed seven protonated carbon atoms, two $-CH_3$, two $>CH_2$, and three $>CH_2$. Arguments presented for assignment of structure $\mathbf{6}$ were extended to this product and bridged tricyclic structure 10 was assigned to it instead of the linearly fused structure 11 (Scheme 3). As proton H_a appears as a broad singlet in compounds 6 and 10 it is not easily possible to specify the particular diastereoisomer for the product. However, the chemical shift of proton H_b (a doublet) being at relatively down field ($\delta = 5.37$ (6) and 5.49 ppm (10)) indicate that the proton is in the deshielding cone of the >C=O. Thus, the products may be assigned as diastereoisomers with *exo*-Br (6 and 10). The mass spectrum of 10 showed molecular ion peaks at m/z = 300, 302. Final confirmation for structure 10 could be reached when it was found that 10 remained unchanged on treatment with alcoholic KOH at reflux for 2 h and on heating with palladised charcoal in diphenyl ether at 260°C for 2 h.

The formation of products 6, 9, and 10 from 4 and 5 may be explained *via* the formation of the ionic intermediates 8a, 8b, and 12, which may then undergo a "6-*endo*" cyclization to give the products 6, 9, and 10 [26].

In conclusion the heterocyclization of **4** and **5** was found to be regioselective with pyridine hydrotribromide, hexamethylenetetramine hydrotribromide, and cold conc. H_2SO_4 to give the bridged tricyclic heterocycles **6**, **9**, and **10**.

Experimental

Melting points were measured in a sulfuric acid bath and are uncorrected. UV absorption spectra were recorded in EtOH on a Hitachi 200–20 spectrophotometer. IR spectra were run on KBr disks on a Perkin-Elmer 1330 apparatus. ¹H NMR Spectra were determined for solutions in CDCl₃ with *TMS* as internal standard on a 200 MHz spectrometer (Bruker). ¹³C NMR Spectra were measured of 75 MHz. Elemental analyses results agreed favorably with the calculated values and recording of mass spectra was carried out by RSIC (CDRI) Lucknow on a JEOL D-300 (El) instrument. Silica gel (60–120 mesh), Spectrochem, India, was used for chromatographic separations. Petroleum ether refers to the fraction boiling between 60 and 80°C.

6-Cyclopent-2-enyl-5-hydroxy-1,3-dimethylpyrimidine-2,4(1H,3H)-dione (4, C₁₁H₁₄N₂O₃)

A mixture of 1.56 g of 1 (10 mmol), 1.02 g of 3 (10 mmol), and 3 g of anhydrous K₂CO₃ in 100 cm³ of dry acetone was refluxed on a water bath for 20 h. The reaction mixture was cooled, filtered, and the solvent was removed. The residue was extracted with 3×25 cm³ of CHCl₃, the organic layer was separated, washed with 2×25 cm³ of H₂O, dried (Na₂SO₄), and the solvent was evaporated. Purification of the crude product by column chromatography (ethylacetate:benzene = 1:9) over silica gel gave **4**. Yield: 65%; white solid; mp 144°C; ¹H NMR: $\delta = 1.7-2.7$ (m, 4H), 3.42 (s, N-CH₃), 3.43 (s, N-CH₃), 4.40–4.47 (m, 1H), 5.71–5.79 (m, 1H), 5.91–5.97 (m, 1H) ppm; IR (KBr): $\bar{\nu} = 1070$, 1600, 1690, 2900, 3300 cm⁻¹; UV-Vis (EtOH): $\lambda_{max} = 215$, 291 nm; MS: m/z = 222 (M⁺).

5-Cyclopent-2-enyl-6-hydroxy-1,3-dimethylpyrimidine-2,4(1H,3H)-dione (5, C₁₁H₁₄N₂O₃)

A mixture of 1.56 g of 1,3-dimethylbarbituric acid (10 mmol), 1.02 g of 3-chlorocyclopentene (10 mmol), and 3 g of anhydrous K₂CO₃ in 100 cm³ of dry acetone was refluxed for 8 h. The reaction mixture was cooled, filtered, and the solvent was removed. The residue was extracted with 3×25 cm³ of CHCl₃, the organic layer was separated, washed with 2×25 cm³ of water, dried (Na₂SO₄), and the solvent was evaporated. Purification of the crude product by column chromatography (benzene:petroleumether = 3:1) over silica gel gave **5**. Yield: 55%; gummy mass; ¹H NMR: $\delta = 1.97-2.36$ (m, 4H), 3.26 (s, N-CH₃), 3.30 (s, N-CH₃), 3.48-3.54 (m, 1H), 5.56-5.59 (m, 1H), 5.89-5.92 (m, 1H) ppm; IR (neat): $\bar{\nu} = 1120, 1700, 2980, 3420$ cm⁻¹; UV-Vis (EtOH): $\lambda_{max} = 214, 260$ nm; MS: m/z = 222 (M⁺).

(10-anti)-10-Bromo-6,7,8,9-tetrahydro-1,3-dimethyl-6,9-methanooxepano[2,3-e]pyrimidine-2,4(1H,3H)-dione (**6**, C₁₁H₁₃BrN₂O₃)

A solution of 0.33 g of **4** (1.5 mmol) in 100 cm³ of CHCl₃ was stirred with 0.45 g of pyridine hydrotribromide (1.5 mmol) or 0.58 g hexamethylenetetramine hydrotribromide (1.5 mmol) at 0–5°C for 1 h. The CHCl₃ solution was washed with 2×25 cm³ of 5% Na₂CO₃ solution, then with 2×25 cm³ of H₂O, and dried (Na₂SO₄). Evaporation of CHCl₃ left a gummy residue. This was purified by column chromatography over silica gel. Compound **6** was obtained when the column was eluted with ethylacetate:benzene = 1:3. Yield: 80%; white solid; mp 168°C; ¹H NMR: δ = 1.89–1.97 (m, 1H), 2.19–2.24 (m, 2H), 2.48–2.59 (m, 1H), 3.34 (s, N–CH₃), 3.38 (s, N–CH₃), 3.91 (t, *J* = 8 Hz, H_c), 4.57 (brs, H_a), 5.37 (d, *J* = 8 Hz, H_b) ppm; ¹³C NMR: δ = 28.68, 29.51, 32.87, 33.47, 45.63, 53.37, 93.51, 132.15, 136.37, 151.72 (>C=O), 155.12 (>C=O); IR (KBr): $\bar{\nu}$ = 1110, 1700, 2970 cm⁻¹; UV-Vis (EtOH): λ_{max} = 218, 299 nm; MS: *m*/*z* = 300, 302 (M⁺).

6,7,8,9-Tetrahydro-1,3-dimethyl-6,9-methanooxepano[2,3-e]-pyrimidine-2,4(1H,3H)-dione (9, C₁₁H₁₄N₂O₃)

To 2 cm³ of concentrated H₂SO₄ 0.22 g of **4** (1 mmol) were added in portions at 0–5°C and the mixture was stirred for 2 h at this temperature. The solution was then poured into crushed ice and extracted with $3 \times 25 \text{ cm}^3$ of CHCl₃. The CHCl₃ layer was washed with $3 \times 10 \text{ cm}^3$ of 5% Na₂CO₃ solution, then with $3 \times 20 \text{ cm}^3$ of H₂O, and dried (Na₂SO₄). Evaporation of CHCl₃ gave a gummy mass. This was purified by column chromatography over silica gel. Elution of the column with benzene:ethylacetate = 3:1 gave **9**. Yield: 75%; white solid; mp 128°C; ¹H NMR: $\delta = 1.56-2.3$ (m, 6H), 3.29 (brs, H_c), 3.42 (s, N–CH₃), 3.48 (s, N–CH₃), 4.91 (brs, H_a) ppm; ¹³C NMR: $\delta = 27.89$, 30.11, 31.93, 31.95, 32.16, 33.64, 33.69, 126.79, 135.90, 150.12 (>C=O), 158.18 (>C=O); IR (KBr): $\bar{\nu} = 1140$, 1700, 2970 cm⁻¹; UV-Vis (EtOH): $\lambda_{max} = 216$, 296 nm; MS: m/z = 222 (M⁺).

(10-anti)-10-Bromo-5,6,7,8-tetrahydro-1,3-dimethyl-5,8-methanooxepano[3,2-e]-pyrimidine-2,4(1H,3H)-dione (**10**, C₁₁H₁₃BrN₂O₃)

A solution of 0.33 g of **5** (1.5 mmol) in 100 cm³ of CHCl₃ was stirred with 0.45 g of pyridine hydrotribromide (1.5 mmol) or 0.58 g of hexamethylenetetramine hydrotribromide (1.5 mmol) at 0–5°C for 1 h. The CHCl₃ solution was washed with 2 × 25 cm³ of 5% Na₂CO₃ solution, then with 2 × 25 cm³ of H₂O, and dried (Na₂SO₄). Evaporation of CHCl₃ left a gummy residue. This was purified by column chromatography over silica gel. Compound **10** was obtained when the column was eluted with benzene:petroleum ether = 1:1. Yield: 70%; gummy mass; ¹H NMR: δ = 2.04–2.57 (m, 4H), 3.30 (s, 6H, N–CH₃), 3.99, (t, *J* = 8 Hz, H_c), 4.47 (brs, H_a), 5.49 (d, *J* = 8 Hz, H_b) ppm; ¹³C NMR: δ = 28.90, 29.73, 33.09, 33.68, 45.83, 53.57, 93.71, 131.32, 135.59, 151.97 (>C=O), 156.32 (>C=O); IR (neat): $\bar{\nu}$ = 1110, 1690, 2970 cm⁻¹; UV-Vis (EtOH): λ_{max} = 216, 299 nm; MS: m/z = 300, 302 (M⁺).

Acknowledgement

We thank the CSIR (New Delhi) for financial assistance. One of us (*S. K. Samanta*) is grateful to CSIR (New Delhi) for a fellowship. We also thank Professor *D. K. Bates* of the Department of Chemistry and Chemical Eng., Michigan Technological University, Houghton, Michigan, USA, for recording of ¹³C, DEPT, and 2D NMR spectra.

References

- Previous papers: a) Majumdar KC, Das U (1998) J Org Chem 63: 9997; b) Majumdar KC, Das U, Jana NK (1998) J Org Chem 63: 3550
- [2] Heidelberger C (1984) In Pyrimidine and Pyrimidine Antimetabolites in Cancer Medicine, Holland JF, Frei E eds Lea and Febiger Philadelphia, pp 801
- [3] DeClercq E, Descamps J, De Somer P, Barr PJ, Jones AS, Walker RT (1979) Proc Natl Acad Sci USA 76: 2947
- [4] Chu CK, Schinagi RF, Ahn MK, Ulas GV, Gu ZP (1989) J Med Chem 32: 612
- [5] Povsic TJ, Dervan PB (1990) J Am Chem Soc 112: 9428
- [6] Miyasaka T, Tanaka H, Baba M, Hayakawa H, Walker RT, Balzarini J, DeClercq E (1989) J Med Chem 32: 2507
- [7] Baba M, Tanaka H, DeClercq E, Pauwels R, Balzarini J, Schols D, Nakashima H, Perno CF, Walker RT, Miyasaka T (1989) Biochem Biophys Res Commun 165: 1375
- [8] DeClercq E (1993) Medicinal Res Rev 13: 229
- [9] Gallo RC (1986) Sci Am 78: 255; (1987) 38: 256

Synthesis of Pyrimidine Annelated Heterocycles

- [10] Majumdar KC, Jana NK, Bandyopadhyay A, Ghosh SK (2001) Synth Commun 31: 2979
- [11] Majumdar KC, Jana NK (2000) Synth Commun 30: 4183
- [12] Majumdar KC, Das U (1997) J Chem Research (S) 309
- [13] Majumdar KC, Das U, Kundu UK, Bandyopadhyoy A (2001) Tetrahedron 57: 7003
- [14] Majumdar KC, Jana NK (2001) Monatsh Chem 132: 633
- [15] Majumdar KC, Choudhury PK, Nethaji M (1994) Tetrahedron Lett 35: 5927
- [16] Majumdar KC, Choudhury PK, Biswas P (1998) Indian J Chem 37B: 1197
- [17] Majumdar KC, Kundu AK (1993) Indian J Chem 32B: 605
- [18] Majumdar KC, Kundu AK (1995) Can J Chem 73: 1727
- [19] Majumdar KC, Das U, Kundu AK (1998) Synth Commun 28: 1593
- [20] Majumdar KC, Kundu AK, Chatterjee P (1996) Synth Commun 26: 893
- [21] Majumdar KC, Khan AT, Gupta AK, Kundu AK, Choudhury PK (1992) Indian J Chem 31B: 667
- [22] Majumdar KC, Choudhury PK (1992) Synth Commun 22: 3013
- [23] Majumdar KC, Kundu AK (1996) Synth Commun 26: 4023
- [24] Majumdar KC, Ghosh S (2002) Monatsch Chem 133: 1317
- [25] Majumdar KC, Samanta SK (2002) Monatsch Chem 133: 1187
- [26] Baldwin JE (1976) J Chem Soc Chem Commun 734